Fractures are common in patients with chronic kidney disease (CKD) and associated with substantially high morbidity and mortality. Bone mass measurements are commonly used to assess fracture risk in the general population, but the utility of these measurements in patients with CKD, and specifically among those on hemodialysis, is unclear. This review will outline the epidemiology and etiology of fractures in patients with CKD with a particular emphasis on men and women on hemodialysis. As well, we will summarize the published data, which describes the association between risk factors for fracture (including bone mass measurements, biochemical markers of mineral metabolism, and muscle strength) and fractures in patients with CKD. Patients with CKD suffer from fractures due to impairments in bone quantity, bone quality, and abnormalities of neuromuscular function. There is a paucity of evidence on the associations between bone quality, bone turnover markers, neuromuscular function, and fractures in patients with CKD. Furthermore, the complex etiology of fractures combined with the technical limitations of bone mineral density testing, both by dual energy X-ray absorptiometry (DXA) and by peripheral quantitative tomography (pQCT), limits the clinical utility of bone mass measurements for fracture prediction in CKD; this is particularly true among patients with stages 4 and 5 CKD. Further prospective studies to identify noninvasive measures of bone strength that can be used for fracture risk assessment are needed.