• High-density lipoprotein and its major apolipoprotein ApoA-I prevent von Willebrand factor self-association. • Targeting von Willebrand factor self-association could be a new approach to treating thrombotic disorders.The ability of von Willebrand factor (VWF) to initiate platelet adhesion depends on the number of monomers in individual VWF multimers and on the self-association of individual VWF multimers into larger structures. VWF self-association is accelerated by shear stress. We observed that VWF self-association occurs during adsorption of VWF onto surfaces, assembly of secreted VWF into hyperadhesive VWF strings on the endothelial surface, and incorporation of fluid-phase VWF into VWF fibers. VWF adsorption under static conditions increased with increased VWF purity and was prevented by a component of plasma. We identified that component as high-density lipoprotein (HDL) and its major apolipoprotein ApoA-I. HDL and ApoA-I also prevented VWF on the endothelium from self-associating into longer strands and inhibited the attachment of fluid-phase VWF onto vessel wall strands. Platelet adhesion to VWF fibers was reduced in proportion to the reduction in selfassociated VWF. In a mouse model of thrombotic microangiopathy, HDL also largely prevented the thrombocytopenia induced by injection of high doses of human VWF. Finally, a potential role for ApoA-I in microvascular occlusion associated with thrombotic thrombocytopenic purpura and sepsis was revealed by the inverse relationship between the concentration of ApoA-I and that of hyperadhesive VWF. These results suggest that interference with VWF self-association would be a new approach to treating thrombotic disorders. are characterized by systemic endothelial activation and microvascular occlusion. In recent studies, von Willebrand factor (VWF) secreted from the endothelium as a result of systemic endothelial activation has been shown to contribute to microvascular dysfunction and occlusion. A portion of the newly secreted VWF remains attached to the endothelial surface, from which it is normally removed through cleavage by the plasma metalloprotease ADAMTS13. 6 However, when ADAMTS13 is inhibited, as during episodes of TTP, or when VWF removal is delayed, as in conditions of intense inflammation such as sepsis and malaria, 7 the secreted VWF self-associates into long, thick strands that bind platelets to form occlusive thrombi in the small blood vessels. 6 VWF synthesis is a complex process. VWF homodimers first form in the endoplasmic reticulum through disulfide bonds involving cysteine residues near the VWF carboxyl terminus. In the Golgi apparatus, these dimers are linked together into chains through disulfide bonds at the amino termini, producing a ladder of multimeric molecules, each differing from the next largest by the molecular mass of a VWF dimer. The largest multimers found in blood can be enormous, reaching a molecular mass of more than 20 million Da. These gargantuan molecules can form even larger structures by associating with other VWF multime...