Neuroblastoma (NB), an embryonic tumour originating from sympathetic crest cells, is the most common extracranial solid tumour type in children with poor overall prognosis. Accumulating evidence has demonstrated the involvement of long non-coding RNA (lncRNA) in numerous biological processes and their associations with embryonic development and multiple diseases. Ectopic lncRNA expression is linked to malignant tumours. Previous studies by our team indicate that MEG3 attenuates NB autophagy through inhibition of FOXO1 and epithelial-mesenchymal transition via the mTOR pathway in vitro. Moreover, MEG3 and EZH2 negatively regulate each other. In present study, we first collected 60 NB tissues and 20 adjacent tissues for Quantitative real-time polymerase chain reaction (Q-PCR) experiments and performed clinical correlation analysis of the results. At the same time, nude mice were used for subcutaneous tumour formation to detect the effect of MEG3 in vivo. Two NB cell lines, SK-N-AS and SK-N-BE(2)C, were overexpressed MEG3 and rescued with EZH2 and then were subjected to proliferation, migration, invasion, apoptosis and autophagy experiments. RNA-binding protein immunoprecipitation (RIP) and Co-Immunoprecipitation (Co-IP) experiments were performed to explore the molecular mechanism of MEG3 and EZH2 interaction. Q-PCR revealed that MEG3 expression was negatively correlated with INSS stage and risk grade of NB. Moreover, MEG3 overexpression was associated with inhibition of NB growth in vivo. MEG3 exerted an anti-cancer effect via stimulatory effects on EZH2 ubiquitination leading to its degradation. Conversely,