This paper describes the aerodynamic simulation and optimization of NACA 0012 airfoil at a low Reynolds number using unsteady Reynolds-averaged Navier-Stokes (URANS) and Spalart–Allmaras turbulence model in Ansys Fluent. The purpose of this paper is to simulate and optimize the airfoil to get better aerodynamic performances at low Reynolds numbers. The Parsec method was selected for the optimization of the NACA 0012 airfoil. Both of these airfoils are simulated using CFD Fluent between 0 to 13-degree angle of attack at a low Reynolds number of 200000. To simulate the airfoil, mesh generation is crucial so an O-grid structured mesh is created. After the simulation, several aerodynamic performances are compared between the airfoils, such as lift coefficient, drag coefficient, pressure coefficient, and lift-to-drag ratio. And the calculated results from Xfoil are taken as references. Between NACA 0012 and optimized NACA 0012, the optimized airfoil showed better aerodynamic performances than the normal one, which was the goal of this paper. Later on, the different flow field variables, such as density, temperature, pressure, and vorticity magnitude were analyzed and compared. Both the airfoils at a different angle of attack were analyzed for these functions, like 7°, 11°, and 20° AOA. During the analytical process, Q-criterion appears to be a very important method of vortex identification in the flow field. With this analysis, we came to know, that as the angle of attack increases the adverse pressure gradient also increases, which creates a big reverse flow.