The efficient detection of volatile organic compounds (VOCs) is critically important in the domains of environmental protection, healthcare, and industrial safety. The development of metal oxide semiconductor (MOS) heterojunction gas-sensing materials is considered one of the most effective strategies to enhance sensor performance. This review summarizes and discusses the types of heterojunctions and their working principles, enhancement strategies, preparation methodologies, and applications in acetone and ethanol detection. To address the constraints pertaining to low sensitivity, sluggish response/recovery times, and elevated operating temperatures that are inherent in VOC sensors, several improvement methods are proposed, including doping with metals like Ag and Pd, incorporating additives such as MXene and polyoxometalates, optimizing morphologies through a fine design, and self-doping via oxygen vacancies. Furthermore, this work provides insights into the challenges faced by MOSs heterojunction-based gas sensors and outlines future research directions in this field. This review will contribute to foundational theories to overcome existing bottlenecks in MOS heterojunction technology while promoting its large-scale application in disease screening or agricultural food quality assessments.