It is a challenge to explore the unsteady vortex structures of flexible flapping wings of X-shaped flapping-wing micro air vehicles (also known as clapping-wing micro air vehicles (CWMAVs)). The objective of this paper is to obtain the influence of wind speed, flapping frequency, and angle of attack (AoA) on the instantaneous and average force coefficients of CWMAVs, investigate flow visualization of the leading-edge vortex (LEV), trailing-edge vortex (TEV) and wake vortex (WV) structures and identify some novel flow mechanisms of flapping propulsion. This paper proposes a mechanics and particle image velocimetry (PIV) measuring platform in a low-speed tunnel. In addition, cross-correlation peak analysis and kriging image reconstruction are applied for postprocessing to enhance PIV image recognition. Combining the time evolution of the forces, the force coefficients, and the flow visualization, we find the evolution and effects of LEV, TEV and WV structures.