The scalability of distributed-memory parallel computers makes them attractive candidates for solving large-scale problems. New languages, such as HPF, FortranD, and VPP Fortran, have been developed to enable existing software to be easily ported to such machines. Many distributed-memory parallel computers have been built, but none of them support the mechanisms required by such languages. We studied the mechanisms required by parallelizing compilers and proposed a new architecture to support them. Based on this proposed architecture, we developed a new distributed-memory parallel computer, the AP1000+, which is an enhanced version of the AP1000. Using scientific applications in VPP Fortran and C, such as NAS parallel benchmarks, we simulated the performance of the AP1000+.