DOI: 10.22215/etd/2022-15188
|View full text |Cite
|
Sign up to set email alerts
|

Vulnerability Assessment of Machine Learning Based Short-Term Residential Load Forecast against Cyber Attacks on Smart Meters

Abstract: Short-term load forecast at residential house level plays a critical role in home energy management system. While a variety of machine learning based load forecasting methods have been proposed, their prediction performance have not been assessed against cyber threats on smart meters which have been increasingly reported. This thesis investigates the vulnerability of four extensively used machine learning algorithms for residential short-term load forecast against cyberattacks, including nonlinear auto regress… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?