This letter presents the first experimental results of our three-dimensional (3D) millimeter-wave (mm-wave) Compressive-Reflector-Antenna (CRA) imaging system. In this prototype, the CRA is 3D-printed and coated with a metallic spray to easily introduce pseudo-random scatterers on the surface of a traditional reflector antenna (TRA). The CRA performs a pseudo-random coding of the incident wavefront, thus adding spatial diversity in the imaging region and enabling the effective use of compressive sensing (CS) and imaging techniques. The CRA is fed with a multiple-input-multiple-output (MIMO) radar, which consists of four transmitting and four receiving ports. Consequently, the mechanical scanning parts and phase shifters, which are necessary in conventional physical or synthetic aperture arrays, are not needed in this system. Experimental results show the effectiveness of the prototype to perform a successful 3D reconstruction of a T-shaped metallic target.