BackgroundAlthough many adiposity indices may be used to predict obesity-related health risks, uncertainty remains over which of them performs best.ObjectiveThis study compared the predictive capability of direct and indirect adiposity measures in identifying people at higher risk of metabolic abnormalities.MethodsThis population-based cross-sectional study recruited 2780 women and 1160 men. Body weight and height, waist circumference (WC), and hip circumference (HC) were measured and body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were calculated. Body fat (and percentage of fat) over the whole body and the trunk were determined by bioelectrical impedance analysis (BIA). Blood pressure, fasting lipid profiles, and glucose and urine acid levels were assessed.ResultsIn women, the ROC and the multivariate logistic regression analyses both showed that WHtR consistently had the best performance in identifying hypertension, dyslipidemia, hyperuricemia, diabetes/IFG, and metabolic syndrome (MetS). In men, the ROC analysis showed that WHtR was the best predictor of hypertension, WHtR and WC were equally good predictors of dyslipidemia and MetS, and WHtR was the second-best predictor of hyperuricemia and diabetes/IFG. The multivariate logistic regression also found WHtR to be superior in discriminating between MetS, diabetes/IFG, and dyslipidemia while BMI performed better in predicting hypertension and hyperuricemia in men. The BIA-derived indices were the second-worst predictors for all of the endpoints, and HC was the worst.ConclusionWHtR was the best predictor of various metabolic abnormalities. BMI may be used as an alternative measure of obesity for identifying hypertension in both sexes.