Abstract. The present paper further develops and experimentally validates the
previously published idea of estimating the wind inflow at a turbine rotor
disk from the machine response. A linear model is formulated that relates one
per revolution (1P) harmonics of the in- and out-of-plane blade root bending
moments to four wind parameters, representing vertical and horizontal shears
and misalignment angles. Improving on this concept, the present work exploits
the rotationally symmetric behavior of the rotor in the formulation of the
load-wind model. In a nutshell, this means that the effects on the loads of
the vertical shear and misalignment are the same as those of the horizontal
quantities, simply shifted by π∕2. This results in a simpler
identification of the model, which needs a reduced set of observations. The
performance of the proposed method is first tested in a simulation
environment and then validated with an experimental data set obtained with an
aeroelastically scaled turbine model in a boundary layer wind tunnel.