2016
DOI: 10.1016/j.patcog.2016.02.015
|View full text |Cite
|
Sign up to set email alerts
|

Walking to singular points of fingerprints

Abstract: Singular point is an essential global feature in fingerprint images. Existing methods for singular points detection generally visit each pixel or each small image block to determine the singular point. That is to say, existing methods require scanning the image to compute a quantity at each pixel or block, and hence they are inevitably time-consuming. We propose a fast algorithm for detecting singular points by walking directly to them instead of scanning the image. Walking Directional Fields (WDFs) are establ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 44 publications
(13 citation statements)
references
References 33 publications
0
11
0
2
Order By: Relevance
“…By using the trial version of VeriFinger SDK [46], minutiae points are extracted from the fingerprint images. The approach mentioned in [47] is utilised for the detection of delta and core type singular points in a fingerprint, whereas for arch-type singular points technique proposed in [48] is used. For the evaluation of the performance of the proposed technique, false rejection rate (FRR), false acceptance rate (FAR), genuine acceptance rate (GAR), and equal error rate (EER) are computed.…”
Section: Methodsmentioning
confidence: 99%
“…By using the trial version of VeriFinger SDK [46], minutiae points are extracted from the fingerprint images. The approach mentioned in [47] is utilised for the detection of delta and core type singular points in a fingerprint, whereas for arch-type singular points technique proposed in [48] is used. For the evaluation of the performance of the proposed technique, false rejection rate (FRR), false acceptance rate (FAR), genuine acceptance rate (GAR), and equal error rate (EER) are computed.…”
Section: Methodsmentioning
confidence: 99%
“…Nos métodos baseados em template, para cada tipo de singularidade, há um filtro (ou template) que é convolucionado sobre a imagem de impressão digital para extrair singularidades [14,15]. Considerado o estado da arte [16], Awad e Baba [17] apresentaram um método baseado em 2 filtros complexos que captura as propriedades de simetria de laço e delta, respectivamente, então convoluciona cada filtro com a imagem de orientação e o ponto que obtiver a reposta mais alta do filtro é considerado ponto singular. Os algoritmos fundamentados na curvatura da orientação de regiões de pontos singulares são bons para detectar e classificar pontos singulares, visto que as áreas onde encontram-se tais pontos são marcadas pela grande mudança de orientação [18,19].…”
Section: Fundamentação Teóricaunclassified
“…Os algoritmos fundamentados na curvatura da orientação de regiões de pontos singulares são bons para detectar e classificar pontos singulares, visto que as áreas onde encontram-se tais pontos são marcadas pela grande mudança de orientação [18,19]. Neste sentido, o trabalho de Qi e Liu [19], considerado estado da arte [16], apresenta um método sensível a ruído e falsas singularidades são extraídas.…”
Section: Fundamentação Teóricaunclassified
“…Subsequently, in this examination, a quick algorithm for recognizing singular focuses is proposed by strolling straightforwardly to pictures instead of checking the pictures. Walking Directional Fields (WDFs) are set up from the orientation field [21]. Then, following the walking directions on WDFs, the method can quickly walk to the singular focuses.…”
Section: Singular-point Feature Extractionmentioning
confidence: 99%
“…In addition, an appearance term, ( , ) , measuring pixel intensity similarity and a bending energy term, ( , ) = , can be added to the similarity score. Afterward, the similarity measure was modified as * = + (21) Although this measure does not consider the strict one-to-one mapping of minutiae, through experimentation, this strategy turned out to be great, giving worthy execution in ear and fingerprint similarity assessment. But, the outcomes of minutiae mapping from the use of the Hungarian calculation on the contextually based cost histograms produced some un-normal sets.…”
Section: Similarity Scorementioning
confidence: 99%