Unilateral knee extension restriction might change trunk alignment and increase mechanical load on the lumbar region during walking. We aimed to clarify lumbar region mechanical load during walking with restricted knee extension using a musculoskeletal model simulation. Seventeen healthy adult males were enrolled in this study. Participants walked 10 m at a comfortable velocity with and without restricted right knee extension of 15° and 30° using a knee brace. L4–5 joint moment, joint reaction force, and muscle forces around the lumbar region during walking were calculated for each condition. Peaks of kinetic data were compared among three gait conditions during 0%–30% and 50%–80% of the right gait cycle. Lumbar extension moment at early stance of the bilateral lower limbs was significantly increased in the 30° restricted condition (
p
≤
0.021
). Muscle force of the multifidus showed peaks at stance phase of the contralateral side during walking, and the erector spinae showed force peaks at early stance of the bilateral lower limb. Muscle force of the multifidus and erector spinae increased with increasing degree of knee flexion (
p
≤
0.010
), with a large effect size (η2 = 0.273–0.486). The joint force acting on L4–5 showed two peaks at early stance of the bilateral lower limbs during the walking cycle. The anterior and vertical joint force on L4–5 increased by 14.2%–36.5% and 10.0%–23.0% in walking with restricted knee extension, respectively (
p
≤
0.010
), with a large effect size (η2 = 0.149–0.425). Restricted knee joint extension changed trunk alignment and increased the muscle force and the vertical and anterior joint force on the L4–5 joint during walking; this tendency became more obvious with increased restriction angle. Our results provide important information for therapists engaged in the rehabilitation of patients with knee contracture.