Na coexistência de fases, os campos termodinâmicos são grandezas constantes ao longo da coexistência. Quando o estudo desses sistemas é feito através de simulação de Monte Carlo, no entanto, os resultados obtidos para os campos podem apresentar laços, a depender do ensemble. Na literatura, os laços de potencial químico são conhecidos há bastante tempo e são atribuídos à interface mas não há trabalhos que discutam a restauração da convexidade. No caso do laço da temperatura, há trabalhos mais recentes, que apresentam dados para um "buraco convexo" na entropia em modelos de rede. Neste trabalho, retomamos o argumento heurístico de Terrell Hill da década de 60 e demonstramos numericamente a equivalência entre os ensemble canônico e grande canônico, bem como entre o microcanônico e o canônico. Além disso, pudemos restaurar a convexidade do potencial químico, reinterpretando a relação entre a energia livre termodinâmica e a energia livre estatística com a inclusão da contribuição da energia livre da interface. Nossa interpretação dos dados de simulação permitiu estabelecer um método muito simples para o cálculo da tensão superficial da interface. Na literatura, não temos métodos bem estabelecidos e gerais para o cálculo da pressão de equilíbrio em modelos de rede no ensemble canônico para mistura. O método de Gibbs-Duhem é muito simples apenas para sistemas puros. Estamos propondo um método para o cálculo da pressão no ensemble canônico para modelos de rede, que pode ser aplicado a misturas. O método é baseado na discretização da energia livre com relação ao volume, e descreve a variação do volume em termos da retirada de uma coluna vazia ou ocupada por partículas. Para sistemas puros, comparamos nosso método com os métodos de Dickman e de Gibbs-Duhem. Mostramos que nossa proposta leva a resultados que se aproximam dos resultados de Gibbs-Duhem, que pode ser considerado "exato", à medida que aumentamos a rede. Verificamos que o método de Dickman não é adaptado para o estudo da coexistência de iii fases, pois o sistema não apresenta um dos laços que permite estabelecer a densidade da fase de densidade maior. Os resultados para altas densidades são incorretos. Isso ocorre devido ao fato do método não permitir a utilização de condição periódica de contorno, em uma das direções. Nosso trabalho foi realizado para os modelos de fluido de rede, puro e mistura, com interações isotrópicas, e para o modelo de Bell, de um sistema puro, que apresenta interações orientacionais. Os resultados foram obtidos utilizando o algoritmo de Metropolis, o algoritmo Wang-Landau, e uma adaptação do método Multicanônico com o algoritmo de Wang-Landau. O uso dos dois últimos é imprescindível para o estudo da equivalência de ensembles.