This version is available at https://strathprints.strath.ac.uk/61585/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Abstract-The present paper is focused on investigation of the electrical, hydrodynamic and acoustic parameters of underwater plasma discharges, stabilized with thin copper wires. The experimental current and acoustic waveforms have been obtained using different combinations of the circuit capacitance, charging voltage and wire length. The resistances of plasma discharges have been calculated for all combinations of electrical and topological parameters, based on the constant resistance approach. Phenomenological scaling relationships that link the plasma resistance and the total energy delivered to the plasma, the period of discharge cavity oscillation and the peak magnitude of the acoustic impulse have been obtained. These relationships can be used in optimization of the acoustic output from the wire-guided discharges for different practical applications.