Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
The recent technology advancements in miniaturizing the primary components of spacecraft allow the classic CubeSats to be considered as a valid option in the design of a deep space scientific mission, not just to support a main typical interplanetary spacecraft. In this context, the proposed ESA M-ARGO mission, whose launch is currently planned in 2026, will use the electric thruster installed onboard of a 12U CubeSat to transfer the small satellite from the Sun–Earth second Lagrangian point to the orbit of a small and rapidly spinning asteroid. Starting from the surrogate model of the M-ARGO propulsion system proposed in the recent literature, this paper analyzes a simplified thrust vector model that can be used to study the heliocentric optimal transfer trajectory with a classical indirect approach. This simplified thrust model is a variation of the surrogate one used to complete the preliminary design of the trajectory of the M-ARGO mission, and it allows to calculate, in an analytical form, the typical Euler–Lagrange equations without singularities. The thrust model is then used to study the performance of a M-ARGO-type CubeSat (MTC) in a different scenario (compared to that of the real mission), in which the small satellite moves along a circular heliocentric orbit in the context of a classic phasing maneuver. In this regard, the work discusses a simplified study of the optimal constrained MTC transfer towards one of the two Sun–Earth triangular Lagrangian points. Therefore, the contributions of this paper are essentially two: the first is the simplified thrust model that can be used to analyze the heliocentric trajectory of a MTC; the second is a novel mission application of a CubeSat, equipped with an electric thruster, moving along a circular heliocentric orbit in a phasing maneuver.
The recent technology advancements in miniaturizing the primary components of spacecraft allow the classic CubeSats to be considered as a valid option in the design of a deep space scientific mission, not just to support a main typical interplanetary spacecraft. In this context, the proposed ESA M-ARGO mission, whose launch is currently planned in 2026, will use the electric thruster installed onboard of a 12U CubeSat to transfer the small satellite from the Sun–Earth second Lagrangian point to the orbit of a small and rapidly spinning asteroid. Starting from the surrogate model of the M-ARGO propulsion system proposed in the recent literature, this paper analyzes a simplified thrust vector model that can be used to study the heliocentric optimal transfer trajectory with a classical indirect approach. This simplified thrust model is a variation of the surrogate one used to complete the preliminary design of the trajectory of the M-ARGO mission, and it allows to calculate, in an analytical form, the typical Euler–Lagrange equations without singularities. The thrust model is then used to study the performance of a M-ARGO-type CubeSat (MTC) in a different scenario (compared to that of the real mission), in which the small satellite moves along a circular heliocentric orbit in the context of a classic phasing maneuver. In this regard, the work discusses a simplified study of the optimal constrained MTC transfer towards one of the two Sun–Earth triangular Lagrangian points. Therefore, the contributions of this paper are essentially two: the first is the simplified thrust model that can be used to analyze the heliocentric trajectory of a MTC; the second is a novel mission application of a CubeSat, equipped with an electric thruster, moving along a circular heliocentric orbit in a phasing maneuver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.