The effect of mixing litter on decomposition has received considerable attention in terrestrial and aquatic (but rarely in both) ecosystems, with a striking lack of consensus in the obtained results. We studied the decomposition of a mixture of poplar and alder in three terrestrial: aquatic exposures to determine (1) if the effect of mixing litter on mass loss, associated decomposers (fungal biomass, sporulation rates, and richness), and detritivores (abundance, biomass, and richness of invertebrate shredders) differs between the stream (fully aquatic exposure) and when litter is exposed to a period of terrestrial exposure prior to immersion and (2) the effect of the mixture across exposure scenarios. The effect of the mixture was additive on mass loss and synergistic on decomposers and detritivores across exposure scenarios. Within scenarios, mass loss and decomposers showed synergistic effects only in the fully aquatic exposure, detritivores showed synergistic effects only when the period of terrestrial was shorter than the period of aquatic exposure, and when the period of terrestrial was equal to the period of aquatic exposure the effect of the mixture was additive on mass loss, decomposers, and detritivores. The species‐specific effects also differed among exposure scenarios. Alder affected poplar only when there was a period of terrestrial exposure, with increased sporulation rates and fungal richness in exposure 25:75, and increased mass loss in exposure 50:50. Poplar affected alder only under fully aquatic exposure, with increased mass loss. In conclusion, the synergistic effects of the mixture changed with a period of terrestrial exposure prior to immersion. These results provide a cross‐boundary perspective on the effect of mixing litter, showing a legacy effect of exposure to terrestrial decomposition on the fate of plant litter in aquatic ecosystems and highlighting the importance of also assessing the effect of mixing litter on the associated biota and not only on mass loss.