Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.
We critically need to know how climate change will influence species extinction rates in order to inform international policy decisions about the biological costs of failing to curb climate change and to implement specific conservation strategies to protect the most threatened species. Current predictions about extinction risks vary widely, suggesting that anywhere from 0 to 54% of species could become extinct from climate change (1-4). Studies differ in particular assumptions, methods, species, and regions and thus do not encompass the full range of our current understanding. As a result, we currently lack consistent, global estimates of species extinctions attributable to future climate change.To provide a more comprehensive and consistent analysis of predicted extinction risks from climate change, I performed a meta-analysis of 131 published predictions (table S1). I focused on multispecies studies so as to exclude potential biases in single-species studies. I estimated the global proportion of species threatened in a Bayesian Markov chain Monte Carlo (MCMC) random-effects meta-analysis that incorporated variation among and within studies (5) and with each study weighted by sample size (6). I evaluated how extinction risk varied depending on future global temperature increases, taxonomic groups, geographic regions, endemism, modeling techniques, dispersal assumptions, and extinction thresholds. I used credible intervals (CIs) that do not overlap with zero and a deviance information criterion (DIC) greater than four to assess statistical support for factors. The majority of studies estimated correlations between current distributions and climate so as to predict suitable habitat under future climates. A smaller number of studies determined extinction risks by using process-based models of physiology or demography (15%), speciesarea relationships (5%), or expert opinion (4%). Species were predicted to become extinct if their range fell below a minimum threshold. An important caveat is that most of these models ignore many factors thought to be important in determining future extinction risks such as species interactions, dispersal differences, and evolution.Overall, 7.9% ...