Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres. dyskeratosis congenita | genomic instability | aging | telomeropathies H uman telomeres are composed of tandem TTAGGG DNA repeats, ending with an essential single-stranded 3′-overhang (reviewed in refs. 1 and 2). This overhang can be elongated by the enzyme telomerase to make up for losses caused by incomplete DNA replication and degradation. The expression of the telomerase reverse-transcriptase subunit (hTERT) is suppressed in most human somatic tissues; consequently, telomeres gradually shorten with each cell division. Critically short telomeres activate the DNA damage response (DDR) and cause cell-cycle arrest or apoptosis. Thus, telomere length and integrity control cellular lifespan and provide a tumor-suppressing mechanism (3). Shelterin, a complex of six core proteins, assembles at mammalian telomeres to suppress DDR and regulate telomere length (4, 5). Shelterin was suggested to facilitate the formation of a telomere (T)-loop, via invasion of double-stranded telomeric DNA by the 3′ overhang, where it is inaccessible to DDR factors and to telomerase.Dyskeratosis congenita (DC) and its severe form HoyeraalHreidarsson syndrome (HHS) are hereditary disorders associated with severely shortened telomeres and diverse clinical symptoms (6-8). The major cause of death in DC and HHS is bone marrow failure, but mortality from cancer and pulmonary fibrosis also occurs at frequencies above normal. Mu...