Game theory has been one of the most successful quantitative concepts to
describe social interactions, their strategical aspects, and outcomes. Among
the payoff matrix quantifying the result of a social interaction, the
interaction conditions have been varied, such as the number of repeated
interactions, the number of interaction partners, the possibility to punish
defective behavior etc. While an extension to spatial interactions has been
considered early on such as in the "game of life", recent studies have focussed
on effects of the structure of social interaction networks.
However, the possibility of individuals to move and, thereby, evade areas
with a high level of defection, and to seek areas with a high level of
cooperation, has not been fully explored so far. This contribution presents a
model combining game theoretical interactions with success-driven motion in
space, and studies the consequences that this may have for the degree of
cooperation and the spatio-temporal dynamics in the population. It is
demonstrated that the combination of game theoretical interactions with motion
gives rise to many self-organized behavioral patterns on an aggregate level,
which can explain a variety of empirically observed social behaviors