Abstract:Word clustering is a serious challenge in low-resource languages. Since words that share semantics are expected to be clustered together, it is common to use a feature vector representation generated from a distributional theory-based word embedding method. The goal of this work is to utilize Modern Standard Arabic (MSA) for better clustering performance of the low-resource Iraqi vocabulary. We began with a new Dialect Fast Stemming Algorithm (DFSA) that utilizes the MSA data. The proposed algorithm achieved 0… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.