A necessity for water filtration technology, due to global pollution and population growth, has led to an increase in attention to advanced nanomaterials that can aid in the purification of air and water. This size-dependent filtration is possible via nanofibrous membranes as they contain high porosity and this pore size is tunable through the fabrication process. Because of this tunability in the nanofibril membrane composition and structure, they possess promising straining abilities, such as high permeability and selectivity, as well as low fouling. There are a variety of polymer blends or organic/inorganic nanofillers that can be used depending on filtration needs. The production of nanofibers consists of various avenues such as synthetic templates, separation by different phases, nanoparticle self-assembly, and most widespread, electrospinning. Electrospinning is prevalent owing to its ease of use and low cost compared to template and self- assembly processes. This chapter describes the multifaceted progression governing electrospinning and its working factors as well as the environmental settings that form nanofibers and their resultant membranes. Additionally, the various designs of electrospinning apparatuses' and review of the methods used to prepare multifunctional composite electrospun nanofibrous membranes will be discussed. Past achievements and current challenges will be provided. Conclusions and perspectives are specified fitting to studied progress so far as well as future needs with regards to water treatment, with a particular focus on industrial applications.