Purpose
This paper aims to analyze energy and exergy analysis of solar-based intercooled and reheated gas turbine (GT) trigeneration cycle using parabolic trough solar collectors (PTC) with the use of MATLAB 2018.
Design/methodology/approach
In the first section of this paper, the solar-based GT is validated with the reference paper. According to the reference paper, the solar field is comprising 30 modules in series and 35 modules in parallel series, where a total of 1,050 modules of PTC are taken into consideration. In the second part of this paper, the hybridization of the solar, GT trigeneration cycle is analyzed and optimized. In the last section of this paper, the hybridization of solar, intercooled and reheated GT trigeneration systems is examined and compared.
Findings
The results examined the first section, the power produced by the cycle will be 37.34 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the efficiencies of energy and exergy will be 38.34% and 39.76%, respectively. The results examined in the second section, the power produced by the cycle will be 38.4 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and accordingly the efficiency of energy and exergy is found to be 40.011% and 41.763%. Where in the last section, the power produced by the cycle will be 41.43 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the energy and exergy efficiencies will be 39.76% and 40.924%, respectively.
Originality/value
The author confirms that this study is original and has neither been published elsewhere nor it is currently under consideration for publication elsewhere.