The escalating demand for rare earth elements (REEs) in industries such as batteries, electronics, and nuclear sectors necessitates their extraction using leaching methods. However, mining operations targeting low-content rare earth resources generate substantial waste, which contains carcinogenic and genotoxic REEs, posing a severe ecological pollution risk. Moreover, with changes in the international landscape and the nonrenewable nature of rare earth resources, efficient extraction, and recycling of these elements are of paramount importance. Electrochemical methods have emerged as a promising approach due to their selectivity and sustainability in ion extraction and separation. This experimental design focuses on extracting Ce 3+ from solution with low-concentration rare earth ions using electrochemical techniques. The carefully devised procedures encompass the preparation of simulated Ce 3+ salt solution, the electrochemical extraction of Ce 3+ , and the subsequent residual concentration determination. Through these steps, students will gain hands-on experience with laboratory operations and techniques associated with mineral engineering and electrochemical extraction. Participating in this experimental design offers students not only practical skills but also the opportunity to develop critical thinking abilities, analytical prowess, and an understanding of the sustainability and environmental implications of electrochemical extraction. This practical experience serves as a solid foundation for their future work and serves to stimulate their interest in scientific research, fostering a drive to dedicate further studies in the related areas.