The rapid accumulation of polymer waste presents a significant environmental challenge, necessitating innovative waste management and resource recovery strategies. This study investigates the potential of chemical recycling via pyrolysis of plastic waste, specifically polystyrene (PS) and polypropylene (PP), to produce high-quality pyrolytic oils (WPPOs) for use as alternative fuels. The physicochemical properties of these oils were analyzed, and their performance in a gas turbine engine was evaluated. The results show that WPPOs increase NOx emissions by 61% for PSO and 26% for PPO, while CO emissions rise by 25% for PSO. Exhaust gas temperatures increase by 12.2% for PSO and 8.7% for PPO. Thrust-specific fuel consumption (TSFC) decreases by 13.8% for PPO, with negligible changes for PSO. The environmental-economic analysis indicates that using WPPO results in a 68.2% increase in environmental impact for PS100 and 64% for PP100, with energy emission indexes rising by 101% for PS100 and 57.8% for PP100, compared to JET A. Although WPPO reduces fuel costs by 15%, it significantly elevates emissions of CO2, CO, and NOx. This research advances the understanding of integrating waste plastic pyrolysis into energy systems, promoting a circular economy while balancing environmental challenges.