Autor a quien debe ser dirigida la correspondencia Recibido Sep. 12, 2012; Aceptado Nov. 06, 2012; Versión final recibida Dic. 15, 2012 Resumen Este artículo presenta una metodología para predecir estados funcionales en procesos complejos a partir de la estimación de grados de pertenencia difusos. La propuesta integra una medida estática como es el resultado de un clasificador difuso entrenado con los datos históricos del proceso y un algoritmo de estimación basado en la teoría de Markov para eventos discretos. La propuesta, que puede ser integrada a un sistema de monitoreo de sistemas complejos, comprende dos etapas: una etapa de entrenamiento fuera de línea para definir el clasificador difuso y el estimador; y una etapa en línea donde se realizan la clasificación de la situación actual del proceso y la estimación del estado funcional para el siguiente tiempo de muestreo. La propuesta desarrollada para la estimación de estados funcionales permite utilizar cualquier método de agrupamiento difuso que suministre la información base que requiere la metodología. La metodología fue probada con éxito en un sistema de monitoreo para una línea de transmisión de energía y en el monitoreo de un sistema de caldera.
Palabras clave: predicción de estados funcionales, clasificador difuso, agrupamiento difuso, cadenas de Markov
AbstractThis paper presents a methodology to predict functional states in complex processes from the estimation of fuzzy membership degrees. The proposal integrates a static measure, such as the result of a fuzzy classifier trained with historical process data, and an estimation algorithm based on Markov theory for discrete events. The proposal, which can be integrated to the monitoring of complex systems, provides two stages: an off-line training stage to define the fuzzy classifier and the estimator; and an online stage where the classification of the current process situation and the estimation of the next functional state are performed. The proposal for the estimation of functional states allows using any fuzzy clustering method that provides the information required by the methodology. The proposed methodology was successfully tested on a monitoring system for a power transmission line and in the monitoring of a boiler system.