The chemistry of methyl bromide on Cu/Ru(001) has been studied utilizing work function change (∆ ) and temperature-programmed desorption (TPD) measurements. The remarkable modification in the methyl fragments dehydrogenation at the completion of a single copper layer and the significant difference in reactivity of the Cu(2 ML)/Ru(001) or Cu(111) surfaces are the focus of this study. A decrease in work function at the completion of 1 ML CH 3 Br of 2.15 ( 0.02 eV and 1.33 ( 0.05 eV was measured, respectively, for Ru (001) and Cu(2 ML)/Ru(001) held at 82 K. Methyl bromide does not dissociate upon adsorption on clean or the copper-covered surfaces, and it is bound with the bromine down. Copper modifies the reactivity of the Ru substrate, gradually decreasing the dissociated fraction of CH 3 Br from 0.55 of the initial one monolayer on clean Ru(001) to 0.06 on Cu(2 ML)/Ru(001), probably because of defects in the copper layer. The methyl fragment dehydrogenation rate slows as the copper coverage increases. At a narrow copper coverage range between 0.8 and 0.95 ML, adsorbed hydrogen and methyl fragments coexist on the surface in the temperature range 230-280 K. Sequential decomposition channels of the parent molecules and the methyl fragment lead to a unique enhancement of methane production rate, this on the account of further hydrocarbon dehydrogenation, as reflected in both ∆p and ∆ TPD measurements. Methane is formed on top of copper terraces as a result of "spill-over" of both methyl and hydrogen atoms, similar to the chemistry over Cu(111) and Cu(110) single-crystal surfaces. The dipole moment of adsorbed methyl is reported here for the first time on metal surfaces, being 0.48 D on top of Cu(2 ML)/Ru(001).