Infrared-visible sum frequency generation (SFG) has seen increasing usage as a surface probe, particularly for liquid interfaces since they are amenable to few alternate probes. Interpreting the SFG data to arrive at a molecular-level configuration on the surface, however, remains a challenge. This paper reports a technique for analyzing and interpreting SFG data--called polarization-angle null or PAN-SFG. PAN-SFG enables ready identification of the ratio of the surface tangential and longitudinal hyperpolarizabilities--the hyperpolarizability direction--as well as the phase relationship between these components separated from the optical factors due to the substrate and experimental geometry. Separation of the surface optical factors results in an immediate connection between the null angle and the surface species polarization. If the Raman polarizability is also known, then PAN-SFG analysis, like the previously reported null techniques, provides a very accurate orientation. In addition, the reported polarization-angle, phase-shift analysis enables facile separation of the nonresonant background polarization from that of the resonant signal. Beyond orientation, PAN-SFG can be used to deconvolute overlapping resonances and identify components beyond a dipole response. This paper reports PAN-SFG for two systems providing deeper insight into both. An acetonitrile-water mixture was previously reported to undergo a phase transition at 7 mol %, attributed to a sudden change in orientation. PAN-SFG demonstrates that acetonitrile generates a classic dipole response and provides compelling evidence that the acetonitrile configuration remains constant as a function of concentration. An alternate model for the phase transition is presented. Like many aqueous systems, the SFG spectrum of the hydrogen-bonded region of ice consists of broad and overlapping features; features previously identified with PAN-SFG. Here PAN-SFG analysis is used to show that the reddest of these, the feature at 3098 cm(-1), contains a significant quadrupole contribution that grows as the temperature is lowered. The quadrupole and its temperature dependence are used to assign the 3098 cm(-1) feature to bilayer-stitching-hydrogen bonds. This is the first definitive assignment in the hydrogen-bonded region of water.