The recycling of organic solvents is a widely discussed topic. The waste organic solvents from thin-film-transistor liquid-crystal display (TFT-LCD) production is characterized by large quantities, multiple types, and complex compositions. Thus, the unified and compatible component analysis method is important for studying the recovery of waste organic solvents. In our work, based on the study of existing analytical methods, we designed a compatible method for the analysis of moisture using Karl Fischer analysis, for the analysis of organic compounds using gas chromatography, and for the analysis of the photoresist and other solids by evaporation. These were specific methods for analyzing the components of near-total formulation thin-film-transistor liquid-crystal display waste organic solvent. The organic matter content was analyzed via gas chromatography with a CP-Sil8CB column and flame ionization detector. The initial temperature of the column was 90 °C and the holding time was 1 min. The heating rate was 30 °C/min. The temperature was raised to 270 °C for 7 min. The internal standard method and the external standard method were used to determine the content of the main components of organic compounds. The relative standard deviation of the analytical results was 1.14~2.93%, 1.21~4.74% and 0.61%, respectively. The analytical results had good accuracy, but the external standard method was better; the recoveries were 99.76~107.60%, 95.86~107.70%, and 95.23~96.88%, respectively. Based on the composition analysis, the composition rule of the waste organic solvent was summarized. Through the exploration of the effect of the waste solvent, the common characteristics of the waste solvent were obtained. This study provides a good strategy and an optimized method for improving the efficiency of organic solvent recovery.