Water Dipole and Quadrupole Moment Contributions to the Ion Hydration Free Energy by the Deep Neural Network Trained with Ab Initio Molecular Dynamics Data
Abstract:<div>We report a calculation scheme on water molecular dipole and quadrupole moments in the liquid phase through a Deep Neural Network (DNN) model. Employing the the Maximally Localized Wannier Functions (MLWF) for the valence electrons, we obtain the water moments through a post-process on trajectories from \textit{ab-initio} molecular dynamics (AIMD) simulations at the density functional theory (DFT) level. In the framework of the deep potential molecular dynamics (DPMD), we develop a scheme to train … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.