2013
DOI: 10.1146/annurev-physchem-040412-110153
|View full text |Cite
|
Sign up to set email alerts
|

Water Interfaces, Solvation, and Spectroscopy

Abstract: Liquid water consistently expands our appreciation of the rich statistical mechanics that can emerge from simple molecular constituents. Here I review several interrelated areas of recent work on aqueous systems that aim to explore and explain this richness by revealing molecular arrangements, their thermodynamic origins, and the timescales on which they change. Vibrational spectroscopy of OH stretching features prominently in these discussions, with an emphasis on efforts to establish connections between spec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

3
82
1
1

Year Published

2014
2014
2017
2017

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 89 publications
(87 citation statements)
references
References 116 publications
3
82
1
1
Order By: Relevance
“…They 'result from attractive interactions, arising from electrostatic, induced and London dispersion forces, between a hydrogen atom from a molecule or a molecular fragment X-H in which X is more electronegative than H …' [1] and govern the properties of protic solvents, a foremost water, as well as the species that are solvated in them [2]. They 'result from attractive interactions, arising from electrostatic, induced and London dispersion forces, between a hydrogen atom from a molecule or a molecular fragment X-H in which X is more electronegative than H …' [1] and govern the properties of protic solvents, a foremost water, as well as the species that are solvated in them [2].…”
Section: Nitrate Anion Solvation 1 Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…They 'result from attractive interactions, arising from electrostatic, induced and London dispersion forces, between a hydrogen atom from a molecule or a molecular fragment X-H in which X is more electronegative than H …' [1] and govern the properties of protic solvents, a foremost water, as well as the species that are solvated in them [2]. They 'result from attractive interactions, arising from electrostatic, induced and London dispersion forces, between a hydrogen atom from a molecule or a molecular fragment X-H in which X is more electronegative than H …' [1] and govern the properties of protic solvents, a foremost water, as well as the species that are solvated in them [2].…”
Section: Nitrate Anion Solvation 1 Introductionmentioning
confidence: 99%
“…[15][16][17][18][19][20][21][22][23][24][25][26][27] and references therein). 2 N. Heine and K.R. Recent improvements in this research field are directly linked to the use of cryogenic, temperature-controllable ion traps, which allow for the preparation of thermalised mass-selected ions with variable internal energy [36][37][38][39][40].…”
Section: Nitrate Anion Solvation 1 Introductionmentioning
confidence: 99%
“…Experiments subsequently verified these predictions (3,4). Surface enhancement of simple ions has since been widely studied [e.g., see the review by Jungwirth and Tobias (5)] and attributed to various properties of the ions including size, polarizability, dispersion forces, hydration free energy (6)(7)(8), and the degree of interfacial roughness (9)(10)(11). Previous temperaturedependent deep UV (DUV) second harmonic generation (SHG) experiments from the Saykally group have determined the enthalpic and entropic contributions to the adsorption of the prototypical pseudohalide, the thiocyanate (SCN − ) ion, showing that a negative enthalpy change drives the ion adsorption, whereas a negative entropy change impedes it (9).…”
mentioning
confidence: 82%
“…Zum Beispiel hat Volumenwasser eine sehr hohe Wärmekapazität, ein sehr komplexes Phasendiagramm und eine sehr große Dielektrizitätskonstante.D ie physikalischen Eigenschaften von Wasser an Grenzflächen unterscheiden sich signifikant von den Eigenschaften des Wassers im Volumen. [163] So ist beispielsweise die Dielektrizitätskonstante von Grenzflächen-wasser zehnmal niedriger als im Volumen, die Oberflächen-spannung der Wasser-Luft-Grenzfläche ist (im Vergleich zu anderen Flüssigkeiten) extrem hoch und das Phasendiagramm von Wasser an Grenzflächen unterscheidet sich signifikant von dem im Volumen. [4,5] Zusätzlich zum grundlegenden Interesse an den genannten Eigenschaften zeigt sich, dass das Verständnis dieser Merkmale entscheidend ist für wichtige Felder wie beispielsweise Elektrochemie,O berflä-chenchemie atmosphärischer Aerosole,C hemie der Mineralien/Wasser-Grenzfläche,B iophysik von Membranen sowie makroskopische Phänomene wie die Bewegung von Insekten über die Wasseroberfläche (z.…”
Section: Introductionunclassified