To predict and evaluate the carbon footprint in the gas phase, furnace fuel oil oxidation in excess air (alpha factor 1.3) was studied over a wide temperature (T = 298–3000 K, P = 0.1 MPa). Equilibrium thermodynamic parameters (entropy, enthalpy, and internal energy) and the concentration distributions of C-, S-, N-, O-, and H-containing components and active particles in the gas phase were determined. Based on the total concentration distribution of C-, S-, N-, O-, and H-containing components and active particles in the gas phase, the weight content of carbon was calculated. Taking into account the chemical matrix of the furnace fuel oil–air system and the weight content of carbon, the man-made load of carbon in the gas phase was found. The results of the work made it possible to evaluate the carbon footprint in the gas phase because of the combustion of fuel, in particular, furnace fuel oil in air. Reduction of the man-made load of carbon oxides (CO, CO2) in the gas phase was achieved by modifying and burning furnace fuel oil in the form of oil-in-water (reverse) emulsions in E-1/9M industrial boilers.