2024
DOI: 10.61453/jods.v2023no53
|View full text |Cite
|
Sign up to set email alerts
|

Water Level Prediction of Riam Kanan Dam Using ConvLSTM, BPNN, Gradient Boosting, and XGBoosting Stacking Framework (CLBGXGBoostS)

Usman Syapotro,
Haldi Budiman,
M. Rezqy Noor Ridha
et al.

Abstract: Research focuses on developing a water level prediction framework for the Riam Kanan Dam using an innovative stacking approach called ConvLSTM-BPNN-Gradient Boosting and Stacking XGBoost (CLBGXGBoostS), which combines the strengths of Convolutional Long Short-Term Memory (ConvLSTM), Backpropagation Neural Network (BPNN), and Gradient Boosting. The study aims to evaluate the performance of the CLBGXGBoostS stacking framework in predicting the water level of the Riam Kanan Dam using 5 years of historical data. T… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 4 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?