Abstract. A kilometre-scale coupled ocean-atmosphere numerical simulation is used to study the impact of the 7 November 2014 medicane on the oceanic upper layer. The processes at play are elucidated through analyses of the tendency terms for temperature and salinity in the oceanic mixed layer. Whereas comparable by its maximum wind speed to a Category 1 tropical cyclone, the medicane results in a substantially weaker cooling. As in weak to moderate tropical cyclones, the dominant contribution to the surface cooling is the surface heat fluxes, with secondary effects from the turbulent mixing and lateral advection. Upper-layer salinity decreases due to heavy precipitation that overcompensates the salinizing effect of evaporation and turbulent mixing. The upper-layer evolution is marked by several features believed to be typical of Mediterranean cyclones. First, strong, convective rain occurring at the beginning of the event build a marked salinity barrier layer. As a consequence, the action of surface forcing is favoured and the turbulent mixing dampened, with a net increase of the surface cooling as result. Second, due to colder surface temperature and weaker stratification, a cyclonic eddy is marked by a weaker cooling, oppositely to what is usually observed in tropical cyclones. Third, the strong dynamics of the Sicily Strait enhances the role of the lateral advection in the cooling and warming processes of the mixed layer.