Structural health monitoring (SHM) is an important aspect of the assessment of various structures and infrastructure, which involves inspection, monitoring, and maintenance to support economics, quality of life and sustainability in civil engineering. Currently, research has been conducted in order to develop non-destructive techniques for SHM to extend the lifespan of monitored structures. This paper will review and summarize the recent advancements in non-destructive testing techniques, namely, sweep frequency approach, ground penetrating radar, infrared technique, fiber optics sensors, camera-based methods, laser scanner techniques, acoustic emission and ultrasonic techniques. Although some of the techniques are widely and successfully utilized in civil engineering, there are still challenges that researchers are addressing. One of the common challenges within the techniques is interpretation, analysis and automation of obtained data, which requires highly skilled and specialized experts. Therefore, researchers are investigating and applying artificial intelligence, namely machine learning algorithms to address the challenges. In addition, researchers have combined multiple techniques in order to improve accuracy and acquire additional parameters to enhance the measurement processes. This study mainly focuses on the scope and recent advancements of the Non-destructive Testing (NDT) application for SHM of concrete, masonry, timber and steel structures.