A model is developed for predicting long-wavelength nonuniformities in the thickness of drying latex paint films. The model includes the effects of temperature, latex particle volume fraction, surface surfactant density, bulk surfactant density, and several material and environmental factors. After the model is simplified by applying the lubrication approximation, equations for spatially independent base state solutions are derived. The base state solutions describe a drying latex paint film of uniform thickness. The equations for the base states are solved numerically and a linear stability analysis is conducted. This analysis indicates that evaporation, slow surfactant kinetics, low initial surface tension, substrate permeability, and high initial latex particle volume fractions destabilize the uniform film, while fast surfactant kinetics, high initial surface tension, and high viscosity are stabilizing. V