We sampled periphyton communities in a highly productive stream to characterize how longitudinal changes in watershed geology and land use affect periphyton nutrient status and elemental composition. Nutrient status was evaluated from measures of periphyton nutrient composition (carbon, nitrogen, and phosphorus), stable isotope signatures (d 15 N and d 13 C), and the response of periphyton to experimental enrichment with nitrogen. Biomass and nutrient content increased dramatically from the headwaters to downstream, while tissue nutrient ratios (C:P and C:N) were more consistent and did not indicate strong N-or P-limitation. Nitrogen enrichment experiments did not exhibit a consistent response upstream or downstream, and periphyton C:N:P stoichiometry showed no significant response to N-enrichment. Absolute densities of periphyton N were 5-to 90-fold greater than the overlying N concentrations in stream water (159-to 353-fold greater for P), and the d 15 N signal indicates downstream enrichment from likely watershed sources (urban and agriculture land-use). These results suggest that periphyton in Spring Creek are not N-limited and store large quantities of both N and P, which in turn can be transported downstream during high flow events.