Monitoring the presence of pathogenic Bacillus spores is important for industrial applications, as well as necessary for ensuring human health. Bacillus thuringiensis is used as a biopesticide against several insect pests. Bacillus cereus spores are a significant cause of food poisoning, and Bacillus anthracis is a recognized biosecurity threat. Laboratory-based methods, such as polymerase chain reaction, enzyme-linked immunosorbent assay, or matrix-assisted laser desorption ionization spectroscopy provide sensitive detection of bacteria and spores, but the application of those methods for quasi-continuous environmental monitoring presents a significant challenge requiring frequent human intervention. To address this challenge, we developed a workstation for quasi-autonomous monitoring of water reservoirs for the presence of bacteria and spores, and designed and validated the functionality of a microprocessor-controlled module capable of repetitive collection and pre-concentration of spores in liquid samples tested with fiberglass (FG), polyether sulfone and polyvinylidene fluoride filters. The best results were obtained with FG filters delivering a 20× concentration of B. thuringiensis and B. cereus spores from saline suspensions. The successful 20× pre-concentration of Bacillus spores demonstrated with FG filters could be repeated up to 3 times when bleach decontamination is applied between filtrations. Taken together, our results demonstrate an attractive instrument suitable for semi-automated, quasi-continuous sampling and pre-processing of water samples for biosensing of bacterial spores originating from a complex environment.