Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Coiled Tubing (CT) is a commonly used well intervention technique for sand/debris cleanout, milling, fishing, cementing, and gas lifting applications. Performing cement plug operations with CT in high-pressure live wells can present a relatively high level of risk of getting stuck, improper placement of cement plugs, and poor quality cement plugs. In this scenario, an offshore well in Vietnam was left with CT held only on the surface by the Blow Out Preventers (BOP) after getting stuck downhole more than a year previously. Retrieval of the CT was required without any downhole barrier in place and circumstances that made the conventional killing of the well difficult. This paper will discuss the equipment necessary, factors to consider in the job design, sealant design with lab testing, and describe the technique used to safely retrieve the fish from the well. During the design phase of the solution, risk assessments were carried out to cover various scenarios such as: Poor condition of one or more of the CT string, BOP, dual ball kelly cock valve, double flapper check valve. Inability of the Organic Crosslinked Polymer sealant to hold well pressure. Difficulty in latching the surface CT stump, and the potential requirement for freezing to establish a surface barrier. Along with the specially designed sealant treatment, multiple yard tests for dressing the sheared CT and latching were performed to represent actual conditions during the operation and allow risk mitigation plans to be put in place. Firstly, the barrier verification process was performed to monitor any well pressure build-up from the downhole/surface pressure reading to confirm a barrier was in place, allowing surface equipment to be rigged up. After this was confirmed, the equipment was rigged up, and a fluid circulation test followed by the inflow test of the double flapper check valve in the bottom hole assembly was performed to verify CT integrity. The first of the organic crosslinked polymer was then pumped to plug inside the CT before electric line (E-line) was run into the CT to cut at the free-point above the stuck location. The second organic crosslinked polymer was then placed to plug between the CT and annulus, forming a barrier allowing the makeup of the spoolable connector. Finally, retrieval of the 1,700 meters of CT string took place without any loss of well control. Retrieving the CT from this high pressure well presented a lot of challenges. Achieving a safe and successful operation showed that with proper planning, design, and risk mitigation plans, a potential well control situation can be prevented with the well being secured and successfully returned to production. This paper can now serve as a guideline for future operations with similar circumstances requiring retrieval of stuck CT from high-pressure wells where it has been held on surface for an extended period of time.
Coiled Tubing (CT) is a commonly used well intervention technique for sand/debris cleanout, milling, fishing, cementing, and gas lifting applications. Performing cement plug operations with CT in high-pressure live wells can present a relatively high level of risk of getting stuck, improper placement of cement plugs, and poor quality cement plugs. In this scenario, an offshore well in Vietnam was left with CT held only on the surface by the Blow Out Preventers (BOP) after getting stuck downhole more than a year previously. Retrieval of the CT was required without any downhole barrier in place and circumstances that made the conventional killing of the well difficult. This paper will discuss the equipment necessary, factors to consider in the job design, sealant design with lab testing, and describe the technique used to safely retrieve the fish from the well. During the design phase of the solution, risk assessments were carried out to cover various scenarios such as: Poor condition of one or more of the CT string, BOP, dual ball kelly cock valve, double flapper check valve. Inability of the Organic Crosslinked Polymer sealant to hold well pressure. Difficulty in latching the surface CT stump, and the potential requirement for freezing to establish a surface barrier. Along with the specially designed sealant treatment, multiple yard tests for dressing the sheared CT and latching were performed to represent actual conditions during the operation and allow risk mitigation plans to be put in place. Firstly, the barrier verification process was performed to monitor any well pressure build-up from the downhole/surface pressure reading to confirm a barrier was in place, allowing surface equipment to be rigged up. After this was confirmed, the equipment was rigged up, and a fluid circulation test followed by the inflow test of the double flapper check valve in the bottom hole assembly was performed to verify CT integrity. The first of the organic crosslinked polymer was then pumped to plug inside the CT before electric line (E-line) was run into the CT to cut at the free-point above the stuck location. The second organic crosslinked polymer was then placed to plug between the CT and annulus, forming a barrier allowing the makeup of the spoolable connector. Finally, retrieval of the 1,700 meters of CT string took place without any loss of well control. Retrieving the CT from this high pressure well presented a lot of challenges. Achieving a safe and successful operation showed that with proper planning, design, and risk mitigation plans, a potential well control situation can be prevented with the well being secured and successfully returned to production. This paper can now serve as a guideline for future operations with similar circumstances requiring retrieval of stuck CT from high-pressure wells where it has been held on surface for an extended period of time.
Umm Gudair Minagish Oolite is a highly heterogeneous reservoir with intermittent micritic units forming low permeability barriers to fluid flow. Based on screening/lab study, the polymer or surfactant-polymer flooding was proposed using normal 5 spot injection pattern. KOC decided to test only polymer flooding because of cost considerations. This study is to design fit for purpose long-term polymer injectivity (LTPI) pilot using produced water (salinity 230000ppm) with the objectives of testing injectivity, adsorption, breakthrough, resistance factor and response time within 6-12 months. Numerical simulation and economic modelling was used for this evaluation to explore various novel strategies. Various parameters were optimized to design Fit for Purpose LTPI pilot configurations using high salinity produced water. The laboratory experiments were conducted in conjunction with reservoir simulation to confirm the technical viability of polymer flooding using high-salinity water. In this study, we discuss existing challenges and how the same was transformed into opportunities by optimizing various parameters such as number of wells, well spacing, well location, perforation layer for injectors and producer and the economics to meet pilot objectives. The simulation results show that normal 2-spot injection pattern (2 injectors and 1 producer) with 80m well spacing and perforation in B-zone is a suitable solution for LTPI pilot within given time. Based on the above plan, one injector was drilled near the existing producer. The recent gyro survey demonstrated shifting of the sub-surface locations of both the producer and injector, thereby altering the well spacing. Further simulation incorporating the new locations indicated that the pilot would not meet the objectives within the piloting duration of 6 months because of shifting. Surface constrains hindered the shifting of drilling location for the second injection well to maintain 2-spot injection pattern. To overcome this challenge, additional simulation works performed to plan and drill the second injector well near another existing producer at 80m well spacing in a different area to test different rock types. Both LTPI pilot designs show higher incremental cumulative oil over water flood, faster polymer breakthrough (∼1 month), faster polymer response and oil peak within 6 months. In addition, using high salinity produced water for polymer flooding is expected to reduce piloting cost and increase operational efficiency by reducing operational problems associated with treatment and handling of less saline water.
Umm Gudair Minagish Oolite is a heterogeneous carbonate reservoir with random intermittent micritic units forming low permeability barriers to fluid flow. The facies, permeability variations and barriers have limited lateral extension. Therefore, different strategies need to be designed to implement accelerated fit-for-purpose polymer injectivity pilots without compromising the proper assessment of key parameters such as polymer injectivity, polymer adsorption, resistance factor, in-situ rheological properties, volumetric sweep efficiency, incremental oil gains, and polymer breakthrough. The field is divided into geological sub-regions based on reservoir scale heterogeneities by integrating static and dynamic data. The pilot location for each region is selected such that it shows minimal variations in reservoir properties in terms of facies, permeability, and extension of barriers. Simulation results were analyzed for each considered pilot area based on injectivity, pilot duration, oil peak rate, overall polymer performance and economics. Using these parameters, pilot design and locations are ranked while emphasizing the need to reduce the number of additional required wells to de-risk polymer flooding as a precursor for commercial development. Based on time-lapse saturation logs different sweep zones are identified and correlated with the facies. The maximum oil swept is observed in clean Grainstones. The facies characterization along with production data were used for defining the geological sub-regions. The pilot performance was analyzed using high-resolution numerical simulation for each geological sub-region, using high-salinity produced water. Thereafter, pilot design and locations were ranked based on dynamic performance. The best performing polymer injectivity pilot, with limited well requirements, was selected for field implementation including one injector and one producer with an inter-well distance of 80m. The envisioned pilot duration is 6 months showing promising incremental oil gains from polymer injection compared to water injection. Besides incremental oil gains, the utilization of produced water for polymer injection improves operational efficiency and cost optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.