Extreme weather events have led to widespread yield losses and significant global economic damage in recent decades. African agriculture is particularly vulnerable due to its harsh environments and limited adaptation capacity. This systematic review analyzes 96 articles from Web of Science, Science Direct, and Google Scholar, focusing on biophysical studies related to maize in Africa and worldwide. We investigated the observed and projected extreme weather events in Africa, their impacts on maize production, and the approaches used to assess these effects. Our analysis reveals that drought, heatwaves, and floods are major threats to African maize production, impacting yields, suitable cultivation areas, and farmers’ livelihoods. While studies have employed various methods, including field experiments, statistical models, and process-based modeling, African research is often limited by data gaps and technological constraints. We identify three main gaps: (i) lack of reliable long-term experimental and empirical data, (ii) limited access to advanced climate change adaptation technologies, and (iii) insufficient knowledge about specific extreme weather patterns and their interactions with management regimes. This review highlights the urgent need for targeted research in Africa to improve understanding of extreme weather impacts and formulate effective adaptation strategies. We advocate for focused research on data collection, technology transfer, and integration of local knowledge with new technologies to bolster maize resilience and food security in Africa.