Despite much research, there are very few commercial prolamin bio-plastics. The major reason, apart from their high cost, is that they have inferior functional properties compared to synthetic polymer plastics. This is because the prolamins are complex, each consisting of several classes and sub-classes and the functional properties of their bio-plastics are greatly affected by water. Prolamin bio-plastics are produced by protein aggregation from a solvent or by thermoplastic processing. Recent research indicates that protein aggregation occurs by polypeptide self-assembly into nanostructures. Protein secondary structure in terms of α-helical and β-sheet structure seems to play a key, but incompletely understood role in assembly. Also, there is inadequate knowledge as to how these nanostructures further assemble and organize into the various forms of prolamin bio-plastics such as films, fibres, microparticles and scaffolds. Some improvements in bio-plastic functionality have been made by better prolamin solvation, plasticization, physical and chemical cross-linking, derivatization and blending with other polymers. The most promising area of 2 commercialization is the biomedical field where the relative hydrophilicity, compatibility and biodegradability of particularly zein and kafirin are advantageous. With regard to biomedical applications, "supramolecular design" of prolamin bio-plastics through control over interand intramolecular weak interactions and SS/SH interchange between and within polypeptides appears to have considerable potential.