In the study, the effect of lactose-maltodextrin and trehalose-maltodextrin matrices on the glass transition temperatures and moisture sorption characteristics of spray-dried b-lactoglobulin-vitamin D 3 complexes was investigated. Incorporation of sugars into complexes can influence the thermal properties and moisture sorption characteristics of powders. The glass transition temperature as an important physiochemical parameter that determines the processing conditions, product quality and stability of the final product was studied with the use of modulated differential scanning calorimetry method. Moisture sorption isotherms, water activity and moisture content as parameters related to sorption properties, were also investigated. Additionally, particle size, wettability and insolubility index were studied to characterise newly synthesized products. For the samples tested, two well-separated glass transitions were found. The dominant effect of maltodextrin on the glass transition temperatures was observed. An increase in the percentage of maltodextrin added resulted in increasing T g value of studied complexes. At low water activity all powdered complexes showed typical sorption behaviour of food systems. Trehalose as a carbohydrate component of powdered complexes, in comparison to lactose, delayed the occurrence of crystallization.