Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Grafting is a commonly employed technique for enhancing the yield and improving resistance to biotic and abiotic stress of cultivated plants. However, whether and how continuous cropping of grafted plants affects the composition, function, and stability of the soil fungal community remain poorly understood. In this study, we investigated the effects of planting years (including 0 years (Y0), 2 years (Y2), 10 years (Y10), and 18 years (Y18)) of grafted watermelon on the structure and functional composition of the soil fungal community under field conditions. Compared with the Y0 soil, the Y2, Y10, and Y18 soils exhibited a significant (p < 0.05) decrease in the richness, Shannon index, and evenness (56.8–65.7%, 22.4–46.3%, and 3.8–38.1%, respectively) in the alpha diversity of the fungal community, but a significant (p < 0.05) increase (0.4–1.3 times) in the fungal population. The structure, core and unique microbiomes, and functional composition of the soil fungal community differed significantly across different planting years. The Y2, Y10, and Y18 soils exhibited significant increases (p < 0.05) in relative abundances of Ascomycota and saprophytic fungi and the proportion of core OTUs, but significantly decreased abundances of Basidiomycota, Chytridiomycota, Rozellomycota, pathogenic and symbiotic fungi, and the proportion of unique OTUs when compared with the Y0 soil. The types of potential plant pathogens and their relative abundance were also significantly increased alongside the planting years (among Y2, Y10, and Y18 soils). Furthermore, the results indicated that the continuous cropping of grafted watermelon altered the co-occurrence networks, leading to a reduction in the complexity and stability of the fungal community networks. Overall, our findings suggest that continuous cropping of grafted watermelon may adversely affect the structure and functioning of soil microbial community, eventually decreasing the effectiveness of grafting technology disease control.
Grafting is a commonly employed technique for enhancing the yield and improving resistance to biotic and abiotic stress of cultivated plants. However, whether and how continuous cropping of grafted plants affects the composition, function, and stability of the soil fungal community remain poorly understood. In this study, we investigated the effects of planting years (including 0 years (Y0), 2 years (Y2), 10 years (Y10), and 18 years (Y18)) of grafted watermelon on the structure and functional composition of the soil fungal community under field conditions. Compared with the Y0 soil, the Y2, Y10, and Y18 soils exhibited a significant (p < 0.05) decrease in the richness, Shannon index, and evenness (56.8–65.7%, 22.4–46.3%, and 3.8–38.1%, respectively) in the alpha diversity of the fungal community, but a significant (p < 0.05) increase (0.4–1.3 times) in the fungal population. The structure, core and unique microbiomes, and functional composition of the soil fungal community differed significantly across different planting years. The Y2, Y10, and Y18 soils exhibited significant increases (p < 0.05) in relative abundances of Ascomycota and saprophytic fungi and the proportion of core OTUs, but significantly decreased abundances of Basidiomycota, Chytridiomycota, Rozellomycota, pathogenic and symbiotic fungi, and the proportion of unique OTUs when compared with the Y0 soil. The types of potential plant pathogens and their relative abundance were also significantly increased alongside the planting years (among Y2, Y10, and Y18 soils). Furthermore, the results indicated that the continuous cropping of grafted watermelon altered the co-occurrence networks, leading to a reduction in the complexity and stability of the fungal community networks. Overall, our findings suggest that continuous cropping of grafted watermelon may adversely affect the structure and functioning of soil microbial community, eventually decreasing the effectiveness of grafting technology disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.