Background
Castor is an important industrial raw material. Drought-induced oxidative stress leads to slow growth and decreased yields in castor. However, the mechanisms of drought-induced oxidative stress in castor remain unclear. Therefore, in this study, physiological, biochemical, and RNA-seq analyses were conducted on the roots of castor plants under PEG-6000 stress for 3 d and 7 d followed by 4 d of hydration.
Results
The photosynthetic rate of castor leaves was inhibited under PEG-6000 stress for 3 and 7 d. Biochemical analysis of castor roots stressed for 3 d and 7 d, and rehydrated for 4 d revealed that the activities of APX and CAT were highest after only 3 d of stress, whereas the activities of POD, GR, and SOD peaked after 7 d of stress. RNA-seq analysis revealed 2926, 1507, and 111 differentially expressed genes (DEGs) in the roots of castor plants under PEG-6000 stress for 3 d and 7 d and after 4 d of rehydration, respectively. GO analysis of the DEGs indicated significant enrichment in antioxidant activity. Furthermore, KEGG enrichment analysis of the DEGs revealed significantly enriched metabolic pathways, including glutathione metabolism, fatty acid metabolism, and plant hormone signal transduction. WGCNA identified the core genes
PP2C39
and
GA2ox4
in the navajowhite1 module, which was upregulated under PEG-6000 stress. On the basis of these results, we propose a model for the response to drought-induced oxidative stress in castor.
Conclusions
This study provides valuable antioxidant gene resources, deepening our understanding of antioxidant regulation and paving the way for further molecular breeding of castor plants.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12870-024-05691-4.