Ultrasonic Guided Waves (GW) actuated by piezoelectric transducers installed on structures have proven to be sensitive to small structural defects, with acquired scattering signatures being dependent on the damage type. This study presents a generic framework for probabilistic damage characterization within complex structures, based on physics-rich information on ultrasound wave interaction with existent damage. To this end, the probabilistic model of wave scattering properties estimated from measured GWs is inferred based on absolute complex-valued ratio statistics. Based on the probabilistic model, the likelihood function connecting the scattering properties predicted by a computational model containing the damage parametric description and the scattering estimates is formulated within a Bayesian system identification framework to account for measurement noise and modeling errors. The Transitional Monte Carlo Markov Chain (TMCMC) is finally employed to sample the posterior probability density function of the updated parameters. However, the solution of a Bayesian inference problem often requires repeated runs of "expensive-to-each "numerical experiment", the training outputs (i.e. ultrasound scattering properties) are efficiently computed using the hybrid WFE scheme which combines conventional FE analysis with periodic structure theory. By establishing the relationship between the training outputs and damage characterization parameters statistically, the surrogate model further enhances the computational efficiency of the exhibited scheme. Two case studies including one numerical example and an experimental one are presented to verify the accuracy and efficiency of the proposed algorithm.