“…1,2 Because both circularity and polarity can be specified by two independent values, that is, c = ± 1 and p = ± 1, four distinct spin states can exist in a single magnetic element with the combination of circularity and polarity. Magnetic vortices have been intensively studied due to their compelling physical behavior [3][4][5][6][7] and their potential in a wide range of applications such as data storage, 8,9 signal transfer, [10][11][12] logic devices, 13 transistors 14 and artificial skyrmion crystals. [15][16][17][18] With respect to practical application of magnetic vortices in advanced nanotechnologies, one of the critical factors is the effective reconfigurability of two topologies, c and p, particularly within large and densely packed arrays of magnetic elements.…”