In order to improve the picking efficiency of warehouses, shorten the time cost and promote the development of the logistics industry, this study analyzes the routing strategies in fishbone layout warehouses under the class-based storage strategy. The fishbone layout was divided into three storage areas for class A, class B, and class C items according to the proportion using the straight line, to meet the classification requirements of items. Under the class-based storage strategy, to evaluate the performance of the return routing strategy and the S-shape routing strategy, the stochastic models of the expected walking distance of the two routing strategies in the fishbone layout warehouse are established by calculating the sum of the expected walking distances in diagonal cross-aisles and picking aisles. Finally, the stochastic models of the two routing strategies are simulated and verified, and the impacts of the two routing strategies on walking distances are analyzed by comparing the expected distances under different ordering frequencies and space allocation strategies. The numerical results show that the return routing strategy has an advantage over the S-shape routing strategy when determining the relevant parameters of the fishbone layout and picking orders. Meanwhile, it also provides a theoretical basis for research on stochastic models of routing strategies in fishbone layout warehouses under the class-based storage strategy.