We study an inverse scattering problem in which the far-field spectral cross correlation functions of scattered fields are used to determine the unknown dielectric susceptibility of the scattering object. One-photon states for the incident field can resolve (at 100% visibility) twice as many Fourier components of the susceptibility compared with the (naïve) Rayleigh estimate, provided that the measurement is performed in the back-scattering regime. Coherent states are not capable of reaching this optimal resolution (or do so with negligible visibility). Using two-photon states improves upon the one-photon resolution, but the improvement (at 100% visibility) is smaller than twice, and it demands prior information on the object. This improvement can also be realized via two independent laser fields. The dependence on the prior information can be decreased (but not eliminated completely) upon using entangled states of two photons.