In a previous paper [Adv. Appl. Math. Mech. 10 (2018), pp. 1025-1056], we used the Buchwald representation to construct several families of separable cylindrical solutions to the Navier-Lamé equation; these solutions had the property of being 2π-periodic in the circumferential coordinate. In this paper, we extend the analysis and obtain the complementary set of separable solutions whose circumferential parts are elementary 2π-aperiodic functions. Collectively, we construct eighteen distinct families of separable solutions; in each case, the circumferential part of the solution is one of three elementary 2π-aperiodic functions. These solutions are useful for solving a wide variety of dynamical problems that involve cylindrical geometries and for which 2π-periodicity in the angular coordinate is incompatible with the given boundary conditions. As illustrative examples, we show how the obtained solutions can be used to solve certain forced-vibration problems involving open cylindrical shells and open solid cylinders where (by virtue of the boundary conditions) 2πperiodicity in the angular coordinate is inappropriate. As an addendum to our prior work, we also include an illustrative example of a certain type of asymmetric problem that can be solved using the particular 2π-periodic subsolutions that ensue when there is no explicit dependence on the circumferential coordinate.