2023
DOI: 10.1109/access.2023.3239660
|View full text |Cite
|
Sign up to set email alerts
|

WaveBYOL: Self-Supervised Learning for Audio Representation From Raw Waveforms

Abstract: In this paper, we propose the WaveBYOL model, which can learn general-purpose audio representations directly from raw waveforms based on the bootstrap your own latent (BYOL) approach, a Siamese neural network architecture. WaveBYOL does not extract features in a handcrafted manner, and the model learns general-purpose audio representations from raw waveforms by itself. Thus, the model can be easily applied to various downstream tasks. The augmentation layer in the WaveBYOL model is designed to create various v… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?